

CUTTING PROCESS

$600 \text{ cm}^2 \text{ per a day}$ $1 \text{ cm}^2 = 1 \text{ EURO}$

Day	Material used	Waste	Costs
1			
2			
3			
4			
5			
6			
7			
8			

MILLING PROCESS

$2 \times 300 \text{ cm}^2 \text{ per a day}$ $1 \text{ cm}^2 = 2 \text{ EURO}$

$1 \text{ cm}^2 = 4 \text{ EURO}$ in additional shift

	Milling machine 1 Profile: A		Milling machine 2 Profile: B, C		
Day	Real machine load	COST First shift Additional shift (if any)	Real machine load	COST First shift Additional shift (if any)	
1					
2					
3					
4					
5					
6					
7					
8					
Fi	rst shift		First shift		
Additional shift			Additional shift		
To	otal cost				

LAMINATING PROCESS

$2 \times 300 \text{ cm}^2 \text{ per a day}$ $1 \text{ cm}^2 = 3 \text{ EURO}$

Day	Material used	Waste	Costs
1			
2			
3			
4			
5			
6			
7			
8			
		Total cost	

ORDERS COMPLETIONS AND SHIPMENT

Client number	Work in Process Number of pieces		Total number of days of delay	Cost of delay $1 day = 500$	
	C	M	L	or days or detay	Euro
C-1					
C-2					
C-3					
C-4					
C-5					
C-6					
C-7					
C-8					
C-9					
C-10					
Sum of work in process		Σ =	Σ=		
Cost of Work in process				Total cost	
(1 piece = 50 Euro)					

RESULTS TABLE

	Team 1	Team 2	Team 3	Team 4
Cost of waste in cutting process				
Cost of additional shift in milling process				
Cost of waste in laminating process				
Cost of Work in Process				
Cost of delayed deliveries				
Total costs				

A3 REPORT

Title: What do you want to write about?

An owner of the problem: Date:

1. Problem description

Why do you want to write about this problem?

2. Current situation

What is a current situation? Use visual tools to present the current situation (schemes, flowcharts, pictures, diagrams, VSM, spaghetti diagram etc.)

3. Goal(s), indicators

The goal(s) should be SMART (Specific, Measurable, Achievable, Realistic, Time-bound)

Indicators should give the possibility to assess improvements in the future

4. Analysis

What are the source causes of the problems? Use a tool which will help you to find the causes of the problem (5xWhy?, Ishikawa diagram, interrelationship diagram, brainstorming, etc..)

5. Proposed countermeasures

What do you propose to implement to achieve the goal(s)? How the proposed solutions can influence on the source causes of the problem and can change the current situation to achieve the future state?

6. Plan

What we have to do?

What is a deadline?

Who will be responsible for the activities?

How much it will cost?

You can use Gant chart, table or other visual tool.

7. Further improvement

What kind of problems can appear (risk analysis)?

Use PDCA to plan further improvement.

Assess what was achieved?

A3 REPORT

Title: What do you want to write about?	An owner of the problem:	Date:
1. Problem description	5. Proposed countermeasures	
2. Current situation		
	6. Plan	
3. Goal(s), indicators		
4. Analysis	7. Further improvement	

Milling Machine 1 Profile: A

Milling Machine 2 Profile: B, C